Gm/Id-Design Methodology

Three times of entering a wrong password to access this site…

Earlier in 2012, I wrote an introductory post about EKV model and later extended the related topic a little bit in another post – Stay Simple – Square-Law Equation Related. Since then I keep following the information about the EKV model and the inversion-coefficient-based analog design methodology.

One of the major contributors on this design methodology is Prof. Willy Sansen. He has given a short tutorial named Impact of Scaling on Analog Design. The tutorial was organized by ISSCC through edX (free access after registration). Most recently he also published an article [1] to summarize his idea in the IEEE Solid-State Circuits Magazine.

The journey starts with a beautiful equation which nicely links the weak and the strong inversion (see the curve in Fig.1).

Analog - 4 (2)

Fig.1 The relationship between V and IC

Fascinated by Prof.Sansen’s design procedure, I tried to apply it to my daily design work. Theoretically, it does give me a broader view and some insight on the low-power design. However, practically I find it difficult to make full use of it. Especially nowadays most of the design enters into the deep submicron region, and the model parameters are so complicated to interpret.

Then there comes another big guy – Prof. Boris Murmann. Yes, the professor provides the famous ADC performance survey! Now the professor also launches his gm/Id starter kit. The kit provides scripts that can co-simulate between SPICE simulator and Matlab and store transistor DC parameters into Matlab files. The data stored can then be used for systematic circuit design in Matlab. It looks brute-force but yet smart and efficient!

It’s free. Enjoy!

Reference

[1] W. Sansen, “Minimum power in analog amplifying blocks – presenting a design procedure ”, IEEE Solid-State Circuits Magazine, fall 2015.

This entry was posted in Analog Design, MOS Models and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s